Bioorganic & Medicinal Chemistry Letters

Bioorganic & Medicinal Chemistry Letters 17 (2007) 6151-6154

Biphenyls as potent vitronectin receptor antagonists. Part 3: Squaric acid amides

Klaus Urbahns,^{a,*} Michael Härter,^a Markus Albers,^b Delf Schmidt,^c Beatrix Stelte-Ludwig,^d Ulf Brüggemeier,^c Andrea Vaupel,^a Jörg Keldenich,^e Klemens Lustig,^e Hideki Tsujishita^f and Christoph Gerdes^g

^aInstitute of Medicinal Chemistry, Bayer Healthcare AG, Bayer-Schering Pharma, 42096 Wuppertal, Germany

^bCombinatorial Chemistry Group, Central Research, Bayer AG, 51368 Leverkusen, Germany

^cInstitute of Lead Discovery, Bayer Healthcare AG, Bayer-Schering Pharma, 42096 Wuppertal, Germany

^dInstitute of Protein Therapeutics, Bayer Healthcare AG, Bayer-Schering Pharma, 42096 Wuppertal, Germany

^eInstitute of Drug Metabolism and Pharmacokinetics, Bayer Healthcare AG, Bayer-Schering Pharma, 42096 Wuppertal, Germany

^fDepartment of Medicinal Chemistry, Bayer Yakuhin, Research Center, Kyoto, Japan

^gInstitute of Cardiology and Hematology, Bayer Healthcare AG, Bayer-Schering Pharma, 42096 Wuppertal, Germany

Received 7 August 2007; revised 6 September 2007; accepted 7 September 2007 Available online 14 September 2007

Abstract—Vitronectin receptor $(\alpha_V \beta_3)$ antagonists have been implicated as a possible new treatment of restenosis following balloon angioplasty. In this work we investigate a series of novel arginine mimetic scaffolds leading to new insight of the $\alpha_V \beta_3$ /ligand interaction. Squaric acid amide 10 is a subnanomolar $\alpha_V \beta_3$ antagonist with improved potency on human smooth muscle cell migration. © 2007 Elsevier Ltd. All rights reserved.

The integrin receptor $\alpha_V \beta_3$ has been implicated in a variety of vascular-mediated disorders such as restenosis after percutaneous transluminal coronary angioplasty, in-stent restenosis, or transplant coronary vasculopathy. This receptor binds to proteins and peptides containing a characteristic continuous tripeptide epitope, also referred to as the arginine–glycine–aspartic acid (RGD) motif. The recent discovery of non-peptide RGD mimetics as potent and selective $\alpha_V \beta_3$ inhibitors represents a hallmark in the understanding of vitronectin receptor pharmacology and function.

In preceding communications, we have described two novel classes of biphenyl vitronectin receptor antagonists exemplified by the α -amino acid **A** and the β -amino acid **B** with potencies of 2.5 and 4 nM, respectively.^{2,3}

Despite their obvious structural differences, both materials share a sulfonamide and a biphenyl moiety as a common structural feature. Likewise, both compounds exhibit urea fragments as uncharged arginine mimetics. In an effort to broaden and compare the structure–activity relationship of the $\bf A$ series, we synthesized a variety of arginine bioisosters and investigated their binding affinity to $\alpha_V \beta_3$.

Keywords: Vitronectin; Urea; Arginine; Guanidine mimetic; Squaric acid amide; $\alpha_V \beta_3$; RGD; Restenosis; Biphenyl; Smooth muscle cell. *Corresponding author at present address: AstraZeneca R&D Lund, SE 22187, Sweden. Tel.: +46 46 33 78 25; fax: +46 46 33 71 19; e-mail: Klaus.Urbahns@astrazeneca.com

Ia: X= SO₂-2,4,6-trimethylphenyl, R=Me

Ib: X= SO₂-2,4,6-trimethylphenyl, R=Wang resin

Ic: X= SO₂-methyl, R=Me

Id: $X = SO_2 - (S)$ -camphoryl, R = Me

Ia

$$a)$$
, $b)$
 1-4
 Ia
 a , b , b
 9

 Ia
 c , b
 5, 6
 Ia
 a , b , b
 10-12

 Ib
 d , e
 7
 Ic
 a , b , b , b
 13

 Ib
 a , b , b , b , b
 14

Scheme 1. Synthesis of biphenyl vitronectin receptor antagonists: (a) carboxylic acid, di-isopropyl carbodiimide, DMF, rt; (b) LiOH, dimethoxyethane, water (1 + 1), rt (40–90%); (c) 5H,10H-dipyrrolo[1,2-a:1,2-d]pyrazin-5,10-dione, pyridine (for 5) 5H,10H-diimidazo[1,2-a:1,2-d]pyrazin-5,10-dione (for 6), pyridine (4 equiv), THF/DMF (5:1), rt, 72 h, 70%; (d) HgCl₂, 1,3-bis-(*tert*-butoxycarbonyl)-2-methyl-2-thiopseudourea, DMF, 12 h, rt; (e) TFA/CH₂Cl₂ 1 h, rt; (f) thiophosgene, THF, rt, 2 h; (g) ethylenediamine, DMF, 70 °C, 12 h; (i) 3 equiv 3,4-bis(methylthio)-1,2,5-thiadiazole-1-oxide, 5 n-propanol, 20 h reflux (40%), then: 10 equiv cyclopropylamine, n-propanol, 2 h, 50 °C (90%); (j) 10 equiv primary amine, ethanol reflux; (k) 5 equiv 3,4-diethoxy-3-cyclobutene-1,2-dione, n-propanol, 20 h reflux; (l) 10 equiv primary amine, n-propanol reflux.

All new compounds were synthesized using the central intermediates **Ia–d** (Scheme 1).⁴ The thiadiazole oxide **9** was prepared using the corresponding bis(methylthio)-substituted heterocycle as a building block.⁵

Table 1 summarizes SAR trends observed in the class of heterocyclic amides derived from biphenyl A. The pyridine and furan amides 1–4 were only weak inhibitors, suggesting the importance of A's distal hydrogen bond donor for optimal interaction with $\alpha_V \beta_3$.

Consistently, the pyrrole and imidazole amides 5 and 6 display higher binding affinities, suggesting a direct involvement of their heterocyclic NH fragments with $\alpha_V \beta_3$. In contrast to these two examples from the A-series, the corresponding pyrrole and imidazole amides of the B-series showed much weaker potency probably indicating the need for an additional, aromatic ring to attain activity within their structural context.²

Compound 7 has been described in an earlier communication.⁴ Its guanidinium group might be regarded as an 'ideal' atom-to-atom mimetic of the arginine side chain in the natural RGD motif. The heterocyclic amide 6 exhibited 10-fold higher affinity to $\alpha_V \beta_3$ than 7. Apparently, $\alpha_V \beta_3$ is tolerating the enlarged distance between the two NH groups within 6. In an effort to take advantage of this observation, we synthesized the thiadiazole 9^5 and the squaric acid amide 10^7 assuming that such moieties would display similar geometries.

Table 1. Structure–activity relationship of amide and guanidinium-substituted biphenyl vitronectin receptor antagonists. K_i values are medians of 3 dose–response curves

Compound	R	K _i (nM)
1	N H N	700
2	H N O	400
3	HN N	>2000
4	O H N	650
5	NH H N	33
6	NH H	1
7	H ₂ N H NH	11
8	H H N	1.3

The affinity improvement for **8**, after incorporation of an ethylene bridge into **7**'s guanidine structure, has been observed in other series as well.⁶ Results indicated in Table 2 show that, whereas the thiadiazole modification retained activity comparable to **7**, the squaric acid amide **10** showed clear subnanomolar potency.

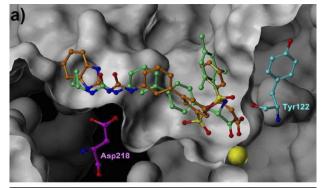
A systematic investigation of a set of squaric acid amides displayed clear SAR within the series (Table 3).

The introduction of larger, benzylic substituents into the R1 position reduced affinity into the double-digit nanomolar range (11 and 12). Similarly, replacing the trimethylphenyl moiety with a simple methyl group reduces affinity (13). Consistent with observations made earlier, camphoryl residues enhance potency (14).³

The affinities of the urea counterparts of 10, 12, 13, and 14 have been described earlier.³ When we compared the

Table 2. Discovery of squaric acid amides. K_i values are medians of 3 dose–response curves

Compound	X	K_{i} (nM)
A	H H N	2.5
9	H N N N N N N N N N N N N N N N N N N N	18
10	N H	0.5


Table 3. Structure–activity relationship of squaric acid amides as vitronectin receptor antagonists. K_i values are medians of 3 dose–response curves

Compound	R1	R2	K _i (nM)
11	2-Pyridyl–CH ₂	SO ₂ –2,4,6-trimethylphenyl	11
12	Ph-CH ₂	SO ₂ –2,4,6-trimethylphenyl	25
13	c-Propyl	SO ₂ -CH ₃	10
14	c-Propyl	SO ₂ –(S)-camphoryl	0.1

four corresponding urea/squaric acid amide pairs, we found that the latter are preferred in all cases by roughly half an order of magnitude (10: 2.5 nM vs 0.5 nM, 12: 60 nM vs 25 nM, 13: 75 nM vs 10 nM, and 14: 1 nM/0.1 nM).

In our previous report we have shown that docking our compounds into the X-ray structure of $\alpha_V \beta_3$ can assist in rationalizing SAR trends (Fig. 1a).³ Assuming that D218 and the Ca²⁺ ion are main interaction partners for our molecules, we docked derivatives **A** and **10** into $\alpha_V \beta_3$ and realized that **10**'s cyclopropyl ring would even better fit into the hydrophobic cleft defined by D150, F177, Q180, and T212 of the α_V side chain, possibly explaining its higher potency (Fig. 1b).

A direct comparison of several in vitro parameters of 10 and its urea congener A is shown in Table 4. The selectivity to GPIIbIIIa appears to be similar, if not better for the squaric acid derivative (A: 51-fold, 10: 94-fold). The improved binding affinity to isolated $\alpha_V \beta_3$ apparameters of 10 and 11 appears to be similar.

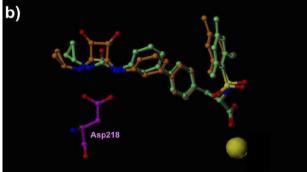


Figure 1. (a) Surface representation of the vitronectin receptor ligand-binding site, with compounds A (green) and B^2 (orange) shown as ball-and-stick models. The Ca^{2^+} ion in the MIDAS is indicated as a yellow sphere. Only receptor amino acids involved in ligand binding are shown (α_V : magenta, β_3 : cyan). (b) Comparison of the docked structures of urea A (green) and squaric acid 10 (orange).

Table 4. Comparison of in vitro parameters for urea ${\bf A}$ and squaric acid amide ${\bf 10}$

$$K_i$$
 (α_νβ₃) 2.5 nM 0.5 nM K_i (GPIIbIIIa)² 128 nM 47 nM HEK 293⁸ 85 nM 13 nM SMC² 390 nM 10 nM K_d (HSA)⁹ 740 nM 420 nM Membrane affinity¹⁰ 2410-fold 24,000-fold

ently translates into improved cellular adhesive antagowith $\alpha_V \beta_3$ -transfected HEK 293 cells.8 Interestingly, 10 also shows improved activity in terms of smooth muscle cell (SMC) migration inhibition. The improvement in this functional response is, to our view, however too large (39-fold) to be explained solely by improved $\alpha_V \beta_3$ affinity (5-fold). We also determined the membrane affinities and realized that **10** is about 10-fold more lipophilic than **A**. ^{9,10} While other contributing factors such as the interaction with other α_V -integrins cannot be excluded, we hypothesize that the combination of improved receptor affinity and higher lipophilicity accounts for the highly potent SMC migration inhibition of 10.

When tested for degradation by rat liver microsomes, 10 showed a clearance of 3.9 L/h kg (extrapolated from in vitro) characterizing this molecule as a high clearance compound. Further, guanidine mimetics are therefore needed to identify biphenyl vitronectin antagonists allowing for investigations in vivo.

In summary, we have discovered several novel arginine mimetics, useful for the development of $\alpha_V \beta_3$ inhibitors. To the best of our knowledge, the structural elements of 9 and 10 have not been described in the context of $\alpha_V \beta_3$ inhibition hitherto. ¹² In particular the squaric acid amide series showed picomolar binding affinity that translated well into improved functional activity on SMCs.

References and notes

- 1. (a) Samanen, J.; Jonak, Z.; Rieman, D.; Yue, T. L. Curr. Pharm. Design 1997, 3, 545; (b) Miller, W. H.; Keenan, R. M.; Willette, R. N.; Lark, M. W. Drug Discov. Today **2000**, 5, 397; (c) Duggan, M. E.; Hutchinson, J. H. Expert. Opin. Ther. Pat. 2000, 10, 1367; (d) Mousa, S. A. Med. Res. Rev. 2003, 23, 190; (e) Hoelzemann, G. Idrugs 2001, 40, 72; (f) Nagarajan, S. R.; Lu, H.-F.; Gasiecki, A. F.; Khanna, I. K.; Parikh, M. D.; Desai, B. N.; Rogers, T. E.; Clare, M.; Chen, B. B.; Russell, M. A.; Keene, J. L.; Duffin, T.; Engleman, V. W.; Finn, M. B.; Freeman, S. K.; Klover, J. A.; Nickols, G. A.; Nickols, M. A.; Shannon, K. E.; Steininger, C. A.; Westlin, W. F.; Westlin, M. M.; Williams, M. L. Bioorg. Med. Chem. 2007, 15, 3390; (g) Urman, S.; Gaus, K.; Yang, Y.; Strijowski, U.; Sewald, N.; De Pol, S.; Reiser, O. Angew. Chem. Int. Ed. 2007, 46, 3976; (h) Heckmann, D.; Meyer, A.; Marinelli, L.; Zahn, G.; Stragies, R.; Kessler, H. Angew. Chem. Int. Ed. 2007, 46, 3571.
- 2. (a) Urbahns, K.; Haerter, M.; Albers, M.; Schmidt, D.; Stelte-Ludwig, B.; Brueggemeier, U.; Vaupel, A.; Gerdes, C. *Bioorg. Med. Chem. Lett.* **2002**, *12*, 205; The **B**-series analogs of **5** and **6** are examples **25** and **26** (Table 3).
- 3. Urbahns, K.; Haerter, A.; Vaupel, M.; Albers, M.; Schmidt, D.; Stelte-Ludwig, B.; Brueggemeier, U.; Gerdes, C.; Tsujishita, H. *Bioorg. Med. Chem. Lett.* **2003**, *13*, 1071.
- 4. For details of the syntheses and the primary assay procedures see: Urbahns, K.; Haerter, M.; Albers, M.; Vaupel, A.; Schmidt, D.; Stelte-Ludwig, B.; Gerdes, C.;

- Lustig, K. WO 0035864, 2000; Chem. Abstr. 2000, 133, 43809.
- Amato, J. S.; Karady, S.; Reamer, R. A.; Schlegel, H. B.; Springer, J. P.; Weinstock, L. M. J. Am. Chem. Soc. 1982, 1375.
- Use of imidazolines (a) Batt, D. G.; Petraitis, J. J.; Houghton, G. C.; Modi, D. P.; Cain, G. A.; Corjay, M. H.; Mousa, S. A.; Bouchard, P. J.; Forsythe, M. S.; Harlow, P. P.; Barbera, F. A.; Spitz, S. M.; Wexler, R. R.; Jadhav, P. K. J. Med. Chem. 2000, 43, 41; (b) Pitts, W. J.; Wityak, J.; Smallheer, J. M.; Tobin, A. E.; Jetter, J. W.; Buynitsky, J. S.; Harlow, P. P.; Solomon, K. A.; Corjay, M. H.; Mousa, S. A.; Wexler, R. R.; Jadhav, P. K. J. Med. Chem. 2000, 43, 27.
- (a) Squaric acid amides have been used as α4 integrin inhibitors before: Head, J. C.; Porter, J. R.; McKay, C.; WO 2002-010136; (b) *Chem. Abstr.* 2002, *136*, 167287 and WO 2002-042264; (c) *Chem. Abstr.* 2002, *136*, 401746 (Celltech).
- 8. Affinity for human $\alpha_V \beta_3$ in a cellular context was determined by measuring the inhibition of the adhesion of purified human vitronectin to HEK 293 cells transfected with human $\alpha_V \beta_3$ as described: Kumar, C. S.; James, I. E.; Wong, A.; Mwang, V.; Field, J. A.; Nuthulaganti, P.; Conner, J. R.; Eichman, C.; Ali, F.; Hwang, S. M.; Rieman, D. J.; Drake, F. H.; Gowen, M. *J. Biol. Chem.* **1997**, *272*, 16390.
- The binding constant to human serum albumin (HSA) was determined by equilibrium dialysis (a) Loidl-Stahlhofen, A.; Schmitt, J.; Noller, J.; Hartmann, T.; Brodowsky, H.; Schmitt, W.; Keldenich, J. Adv. Mater. 2001, 13, 1829; (b) Sebille, B.; Zini, R.; Madjar, C. V.; Thuaud, N.; Tillement, J. P. J. Chromatogr. 1990, 51, 531.
- Membrane affinities were determined as described. Briefly, the reduction of compound concentration after incubation with liposomal egg yolk lecithin followed by ultracentrifugation was measured by HPLC: Loidl-Stahlhofen, A.; Hartmann, T.; Schottner, M.; Rohring, C.; Brodowsky, H.; Schmitt, J.; Keldenich, J. *Pharm. Res.* 2001, 18, 1782.
- 11. The prediction of hepatic clearance was performed according to (a) Houston, J. B.; Carlile, D. J. *Drug Metab. Rev.* 1997, 29, 891; (b) Briefly, compounds were incubated (1 μM, 37 °C) with 0.2 mg/ml rat microsomal protein. Samples were taken at 7 time points within 30 min to calculate half-lives and extrapolate clearance. Compound A showed an extrapolated clearance of 0.6 l/h/kg in this in vitro assay.
- Recent review on arginine mimetics Masic, L. P. Curr. Med. Chem. 2006, 13, 3627.